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Abstract

A brief review of the features of Standard Shakura - Sunyaev Disc  (SSD ) and
Advection - dominated Accretion Disc (ADAD) is discussed. In this paper, it is presented
the physical bases, which we use 1o obigin the parameters, describing two models. The
built theoretical systems are transformed in a suitably for operation view.

1. Introduction

The new, more functional theory about disc accretion - the advection
theory | 10], has appeared in the last years.

It has arisen because of that the standard theory gives common view on
accretion flows, but couldn’t explain any observant phenomena as: very high
effective temperature ( in standard theory disc is unstable 1 transforms to tore
); non - thermal spectrum with power dependence of luminosity L from
accretion rate M (~M? in two - temperature model ); jets and s.o.

Other priority is that the advection - dominated flows may occur in
both cases of optical depth - very large or very small it’s value [10], which
cxtend the volume of studying obiects: active galactic nuclei, elliptical
galactics, X-ray binaries and cataclysmic variables.

The conditions of transition between standard Shakura - Sunyaev disc
and Advection - dominated disc are discussed by Abramowicz and
Igumenchev [1]. They used a simple two - dimensional hydrodynamical
model, assuming an instant destruction of SSD by some lunknown physical
process at radius Iuy. The result of their investigation shows that flux of
matter from the destroyed SSD expands and forms thick disc { ADAF ). The
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encrgy, which is necessary for expansion, is supplied locally by viscous
heating. So expanded matter flows in all direction from source of matter and
forms a geometrically thick disc.

Yamasaki [13] investigates the stability of two - dimensional ADAD
against local thermal perturbations - for optically thin discs. In result he
obtains that weakly unstable modes exist due to radiation effects, but the
mode is stable when the thermal conduction is efficient. Because of turbulent
heat diffusion, in two - temperature ADAF thermal perturbations damp.

Wu |12] proved, that in the case of very small advection, thermal
mstability exist when the disc is geometrically thin. If consider thermal
diffusion, however it disappears. More than if the disc is advective
dominated thermal instability doesn’t exist. There are cnough dates that
advection and thermal diffusion have significant effect on the stability of hot
optically thin disc. The detail stability analysis of Wy shows that only two
stable thermal equilibria of accretion disc exist. One of them is optically thin
advection - dominated and the other is optically thick gas - dominated.

The faraily of sclf - similar solutions [10], where the temperature of
accreting gas is almost virial and flow is quasi - spherical, define some of
propertics of the ADAF, as:

e the angular velocity of the flow € is less|then Keplerian angular
velocity €.

= ADAF is convective inslable, because convection transfers encrgy
from small to large radius.

¢ Bernoulli parameter b ( scale changed ) is positive in self’ - similar
ADATF for wide range of parameters, e.g. gas may spontancously expands o
infinity.

Nakamura [9] elaborates global steady models of two - temperatuzes,
advection - dominated accretion flows around black holes, as he pays
attention to trangonic  region near black hole.

Chen and Abramowicz [4] present optically thin ADAD, described by
tull system of differential equations. They obtain glabal transonic solutions.
As a result from this follows that far from sonic point, scif - similar solutions
18 a good approximation to global structure of the flow. That is true if
accretion rate is close to maximum value, above, which the solutions for
optically thin disc don’t cxist. The simple self-similar solutions nowhere
approach to complete solution [117.

In recent work we consider optically thick advection - dominated
flows. The mainly aim of thc paper is to show that the optically thin disc
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remains geometrically thin becausc of the advection {3]. It is known that
when o increases the sonic point removes oulward [4]. That is why such
advective flow is supersonic, when viscosity parameter o is large for
optically thick disc.

This letter is built as follows: It consists of two parts.

Part I: In § 2 we present the main physically characteristics of two
flows. In § 3 is present the vertical structure. Comments of part 1.

Part II: Paragraph 4 describes the cquations of eveolution of both
discs. In § 5 we have obtained the self-similar solutions, Discussion of part
I1.

2. Basic equations

Accounting for the form of accretion flows we can use cylindrical
coordinate system, The acceleration created by the potential in @ has the
form;

V, do
2.1 L=
21 ¥ dr

where V,, is the linear velocity in .

(2.2} Ve =ar
We shall use the Newtonian gravitational potential for standard
discs:
GM
(2.3) D=
r

GM .
and pseudo- Newtonian @ = ——— (2.4) for advective discs,
where

2GM
(25) r,=—— isthe gravitational radius of the black hole.
c

G — the gravitational constant, M — the mass of the central object, ¢
-light velocity,
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The angular velocities for both discs are:

2.6) w, = —G?
;

27) o= —QM—Z
?‘(?‘ - ?'E)

Geometrically thin dises are described by yet another parameter -
surface density of the disc:

238) 2= { pdz=28p

~-H
Now we can form the basic equations of non-stationary accretion:

The mass conservation law:

2.9 r %Jr %(}'EV,)= 0

There is no difference in the equation for two discs, but V, is much
larger for the advective one.

The momentum conservation law:

@10) rZ o) Zav, o)=L 2

8 is the momentum by viscosity forces:
(2.11) 8 =21 Wr*

W, - vertically integrated viscosity per unit length of

circumference.
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2 Ow
Q12) W, = j; @z = VEr —

v - Kinetic viscosity;
(2.13) v=aV H

V; is sound velocity,

T is the displacement between two layers at diffcrential

rotation of the disc.

Thermal balance equation
The discs are optically thick. Therefore, Local Thermodynamical
Equilibrium exists.

2.14) Q" ~0Q
where Q7 is the heating produced by viscosity:

.1 (‘760)
(2.15) © _ZW";’[rér and

acT*

(2.16) 07 =

is radiated cooling

a - radiation constant.

T - effective temperature

T - optical depth of the disc
(2.17) dr = pydz

% - opacity coefficient.
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However, if for some reason, disc accretion rate increases and
inflow time becomes shorter than photon emission time, the disc cannot
reradiate generated energy. Part of radiation is caught by the flow, being
thus generated, which reduces entropy gradient and the flow is directed 1o
the center. Thereby, advection appears and the thermal balance takes the
form:

(218) QW +0 =0

where

2.19) Q,, = zv,rj—s

1
as ‘
and o radial gradicnt of the entropy.
¥

Radial motion egquations

&, v,
(220) E—L+vV.—L-Zalk=W +G
5[ ¥ &_ & Tp
&, &, H
(@20 243V, 230" ~of)r =222 W, + G

r

H
(2.22) P= J’Pa{z
-H

(0’ - @%) - as a result of advection, disc equilibrium changes. An
inertial spring is needed to keep the structure stable.

Using a similar system ( 2.9, 2.10, 2.18, 2.21 ), Narayan and Yi [10]
have obtained that in advective discs: -

V, =—co,r
(2.23) w=wc,
V, = o7t

where ¢ ) ¢; €3 are dimensionless constants.
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3. Vertical structure [8].

Equations of hydrostatical equilibrium:

1 P 5
(3.1} '-Ek——‘:“mkz
1 4P
32) ——=_
( )p& w°z

Equation of continuity:

2
k3 & *
L=2Hp

Equation of radiation transfer:

3y & =¢
4
3.5 —svr®, ¢ M_— "
& 3yp &

and we take into account (2.23):

T4
3.6 Sysr®, ¢ HAar")
Cs dz 3;{,0 17

=-0°

where

(37) S=c,nT-RInp

is the entropy of idcal gas, R is the gas constant.
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The vertical gradient of radiating fluctuation is equal

relcased in
disc:

L _
(38) “F=¢

Equation of ideal gas:

RT
(3.9) P=p—
7
ﬁzvz
p 5

X is opacity coefficient:

X'
(10 x==3%

Yo Thompson’s opacity coefficient:

a,b are constants,

o energy

The obtained differential system will be transformed by an
appropriate group, corresponding to the approximation for a slim disc:

(3.11) AP~ -P; AQ~Q; AT~T;AZ~H

This allows us to receive the solution in power dependences of
independent variables or their dimensionless combinations — that is the sclf-

similar solution [2].

To obtain a complete algebraic system we must also include the

specific moments in the discs:

(3.12) h, =an?

as well as the average momentums of viscosity power between the disc’s

adjacent payers,
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The following system of equations is obtained for both discs:

Standard disc

Equations holding for both
discs

Advdctiomdominamd disc

h=~GMr (3.13) GMr®
h, =— (3.19)
R
GM GM
@ =] (3.15) O = [ (3.16)
7 | r(r = rg)
V.=w, H 3.17 z V, =lwH 3.19
5 * { ) pP= __Vf 3.18) . =@ { )
2H |
W,, = kT (G20 | F=W,r*  (321) W, =kST (322
3 R . 1 R
k=——a— k :—[—+c2Ja-—
2 u 2 7
. 3 N 171
~ T e @ =-Zl5teWe
{(3.23)
| (3.24)
312 ¢, V.ET
- T4____ + 1 ¥ .
E=4a 2 0 \/Z 7, (c‘p R)+
{3.25)
2a¢T"
+ - = —
32
| (3.26)
IZ = klzﬂlTEﬁHC] /l/ — k!FaEﬂm Tbchm
(3.27) {3.28)
| Xo
ki =1
k, = X0 e o
2 ]
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This algebraic system can be solved if in (2.12) we take v in the
advective case and use 2.7y u (3.12). We will obtain the explicit
dependence of the parameters of both discs on their X and @, as well as
the dependence of the average viscosity moments on % and h [6].

A solution systern for both discs is obtained, different for both

discs:

Standard ¢ disc

Advection-dominated disc

T =T,z g (3.29) T =T w’r (3.34)
2 f
@92) Fang 7o _ Wi
T - ‘2?6%[£J : © T K
( 1 -2n‘+4 ac ‘“,
a, +2 I=g
T A e v
6—2b - 625 —¢
V.=V 20" (3.30) V. =Via,r
! 3.35
RT,)2 513 |
Ve=|—2 Y7
o= vy (22
st T |
1%
W, =W, I g2 (3.31) W, =WiZo'r® (336
Wl ) _ _3{2}_\’% W;‘?U = Q{c“3
repl 21&:
P = pytivig, Ml (3.32) P=P'Sw'r (3.37)
1 |
— VHC
RT 2 a _ .\_0 2
A =[ U) f _( 2 J
4u
F=Fz\y® (3.33)
Brdbi=2¢e h, 10k, 1
Fy =W, (GM) 6-2by -0, F= (2z—5 &)hllf (3.38)

A:IO+2a,—2b1—c,
6-2b ~c,
18- 8b, +2¢,
T 6-2b ¢,
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4. Discussion

In the paper arc shown the main theoretical principles when there is
a development of the accretion in a standart and advection regimes. It's
formed the horizontal and vertical stractures of the accretion discs in two
regimes, when the geometrically thin disc approximation is conserved.

We have cmphasized on the processes, which determine the

behaviour of the disc plasma in two considered cases.
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HAKON OCOBEHOCTH HA o JIMCK
U AIBEKTABHO-TOMUHWPAH AKPEIIMOHEH ANCK.
ABTOMOJEBHU PEIIEHWS A TAXHOTO CPABHEHHUE

Jvuesap Quaunos, Kpacumupa Auxosa, Hanuena Audpeesa

Pesiome
Hanpaser ¢ xparex ofsop ma ocoBeroctute Ha CranpapTaus xuck ma
[Haxypa-Crouses 1 ABEXTHBHO-TOMHEHIPALIHS axpenHoneH auck. [IpexcrascHa ¢
$busEIHaTa OCHOBA, KOTO HME HIMOMIBAME 32 A4 MONYHUM IApaMeTpHTE,
OIMCBALTM HeaTa Mofiena. Iloctpoenure Teopersyny cacremu ca TpaHCPOpMUPEHK
B TOAXOAMM 33 U3CHSABAHE BUJ.
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